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Abstract. The bound-polaron problem in a purely two-dimensional quantum well isstudied 
variationally for the entire rangeof the electron-phonon coupling constant and the Coulomb 
binding parameter. The ground-state energy. the average number ofvirtual phonons around 
the electron and the she  of the polaron are calculated. A comparison made with the 
corresponding quantities for bulk crystals shows that the polaronic effects are more pro- 
nouncedin twodimensions. The energiesofthefirsttwoexcitedstatesareobtainedand the 
phonon-induced Lamb shift corrections are computed for several polar materials 

I. Introduction 

With !he development of modern fabrication techniques like molecular-beam epitaxy 
and metal-organic chemical-vapour deposition, it  has now become possible to realize 
electron systems in quasi one or two dimensions. Consequently. much effort (see [l] for 
references) has lately gone into exploring electronic states at surfaces and interfaces and 
in quantum wells and heterojunction superlattices of polar semiconductors. These 
studies are important from the point of view of device technology and also for the 
understanding of a number of surface phenomena such as transport properties in thin 
films, photoemission and electron diffraction. For the quantum-well problem, both 
purely two-dimensional (ZD) and quasi-two-dimensional polaron models have been 
studied and one of the most interesting results emerging from the free surface optical 
(so) polaron model is that the polaronic properties are more pronounced in two dimen- 
sions than in three dimensions. 

Bhattacharya et a1 [2] have introduced the model problem of an extrinsic quasi-zr, 
electron interacting with the so phonons of a polar material and a positive Coulomb 
impurity localized at the surface. Imperfections being a rule rather than an exception, 
such an impurity-bound ZD polaron is obviously more realistic and is therefore of much 
practical importance. Gu and his collaborators [3] have considered in a series of papers 
the case of an intrinsic bound polaron localized at surfaces and interfaces of polar 
materials and in polar slabs. Their work has revealed several interesting features about 
these systems. Mason and Das Sarma [4] have calculated the phonon-induced shifts in 
shallow donor levels in semiconductor quantum structures such as AI,Ga,-,As-GaAs 
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quantum wells and the CdTe-HgTe system using a purely ?D polaron model and have 
shown that the phonon Lamb shifts obtained perturbatively are negligibly small. Very 
recently, the ground state ( G s )  of this model has been studied in the limiting cases by 
Bhattacharya et a! [5] ,  who have also proposed a new dimensional scaling relation for 
the~senergy .  In the present paperwe addressourselves to the same?^ modelquantum- 
well problem for the entire range of coupling parameters. Using a variant of the Lee, 
Low and Pines (LLP) method [6] as proposed by Huybrechts (LLP-H) [7], we obtain the 
G S  energy, the size of the polaron, the average number ofvirtual phonons in the polaron 
cloud and the first two internal excited-state energies. To examine the efficacy of this 
method we also extend the path-integral calculation of [SI in the harmonic oscillator 
effective potential approximation to all coupling and compare with the corresponding 
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LLP.H GS IeSUkS. 

2. The model Hamiltonian 

Thc model we consider is as follows. The material under study is an extremely thin film 
of an ionic crystal or a polar semiconductor on a non-polar substrate. and for simplicity 
it is modelled by a purely ?D quantum well. The material contains an extra electron at 
the bottom of its conduction band which interacts with the (ZD) optical phonons of the 
system. Let us also consider a localized Coulomb impurity in the system which can bind 
the electron. Assuming the effective-mass approximation to be valid the Hamiltonian 
for such a purely ?D electron-impurity system interacting with ?D optical phonons of the 
polar medium may be written as 

where all vector are two-dimensional and p'* = x'* + y'*.  The first term refers to the 
kinetic energy of the electron in two dimensions; the second term describes the electron 
impurity interaction, where L i s  an effective dielectric constant given by 

E, being the high-frequency dielectric constant of the material; the third term is the 
unperturbed ZD optical phonon Hamiltonian, with w,denoting the dispersionlessoptical 
phonon frequency in two dimensions; and the fourth term gives the electron-phonon 
interaction as well as the impurity-phonon coupling, the impurity being considered to 
be centred at the origin. The coefficient 5;. is given by 

where A' measures the area of the surface, 

6 = Zn/[w:(E,  - E,)] 

E ,  = ( € 3  - l)/(Es + 1) 

E ,  = ( E ,  - l ) / ( E x  + 1) 

€,beingthe staticdielectricconstant of themedium. Weshall work in theFeynmanunits 
and therefore scale the energy by hw,, length by u-l ,  where U is given by 
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h2u2/m = hw,, area by U-' and wavevectors by U .  The Hamiltonian (2.1) then reduces 
to the following dimensionless form: 

H = - = - $0: - - + X (6:6, + 8) + (2.7) 
H' P 
6% p q  q 

15,(e-"'p - 1)6: + HC] 

cr and P being dimensionless coupling parameters. The impurity-phonon interaction 
term can, however, be completely eliminated by performing the canonical trans- 
formation [SI: 

bq = b, - 5,. (2.11) 

Finally ignoring an infinite constant energy (Zq!Eq12), which is equivalent to adjusting 
the baseline of the energy, the system Hamiltonian can be expressed as 

where P is  the renormalized Coulomb binding parameter given by 

with 

Fs = ( E ,  + 1)/2 

(2.13) 

(2.14) 

3. The ground state 

In the LLP-H method the first LLP transformation [6] is modified as 

U ,  = exp( -ia q.rb:bq) (3.1) 
9 

where a is a variational parameter. Then after the second LLP transformation [6] 

the Hamiltonian (2.12) becomes 

A = u;i U-iHU, U2 

= & V i  ---+E P (1 + u2q2/2)(b: +f,*)(b, +f,) 
p q  

(3.3) 
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where p is the electron momentum and the function f ,  is to be obtained variationally. 
When a = 1 this modified procedure reduces to the usual LLP method, and for a = 0 this 
scheme is equivalent to the Landau-Pekar formalism. The variational energy is now 
written as 

E = (@(PI I(0l HI 0)l @@)) (3.5) 
where@(p)istheelectronicfunction tobechosenvariationallyand1O)is theunperturbed 
zero-phonon state. If we assume thatf,is a function of IpI only, then 

z141fq12 = o  
‘I 

and the variational energy simplifies to 

(3.6) 

E = ( Q , I ( - & V ~ - P / P ) I W +  C ( 1  +aZq’/2)If,12 + X ( E , P ; ~ , *  + W  (3.7) 
D P 

where 

pq = ( @ @ ) / e i ( l - a ) ~ ~  IQ@)) (3.8) 
is the Fourier transform of the renormalized charge density. Minimizing (3.7) with 
respect to f; now yields 

f ,  = - E q P ; l ( l  + a2q2/2) (3.9) 

(3.10) 

The mean number of virtual phonons N in the cloud around the electron in the GS may 
be written as 

N=(~P(p)l(OlNlO)l~(p))= EIf,l’ (3.11) 
9 

where 
N =  U ; ’ U ; 1 b ~ b q U l U 2  (3.12) 

and the size of the polaron R may be defined as 

R = (Qb) I P I WP)). (3.13) 
So far the electronic wavefunction has not been specified. Now we shall consider two 
types of trial wavefunctions, namely the Guassian function (the harmonic-oscillator 
approximation) and the Coulomb Is function (the hydrogenic approximation). 

3.1. The harmonic-oscillator approximation 

Choosing 
@(p)  = (A/&) exp(-~*p2/2) 

pq = exp[-(1 --a)zqz/(4i2)]. 
we obtain 

Equations (3.10). (3.11) and (3.13) then reduce to 

(3.14) 

(3.15) 
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R = G j ( 2 a )  

(3.16) 

(3.17) 

(3.18) 
where erfc(x) is the complementary error function. Minimization of (3.16) with respect 
to A now gives 

R = * / 2 [ 6 p  + (n/2)ate“ erfc(r)] 

(3.19) 

(3.20) 

(3.21) 

(3.22) 
where 

t =  ( 1  - a)/aA (3.23) 
is to be treated as a new variational parameter instead of a. The GS energy is finally 
obtained by minimizing (3.20) with respect to f. With this variationally obtained value 
of twe can then calculate the number of phonons and the size of the polaron from (3.21) 
and (3.22) respectively. For all values of a and p ,  calculation has to be performed 
numerically. However, in the limiting cases it is possible to get analytical expressions. 

(i) Weak-coupling weak-binding (extended-state) limit (a+ 0, p -  0, a+ 1). In 
this limit 

(3.24) E = -YCLY/2 - Zp2/2 
N = na/4 
R = 1/(2/3). 

(3.25) 

(3.26) 
It is interesting to note that in the extended-state (ES) limit the average number of 
phonons depends on the electron-phonon coupling only, while the size of the polaron 
is governed by the impurity binding parameter. 

(ii) Localized-state (U) limit (a-+ 0). In this limit, t+ 7- and we use the asymptotic 
relation 

&rez2 erfc(t) = I. (3.27) 
The GS energy is then obtained as 

E = -(n/S)(a + 2p)* (3.28) 
which is the Landau-Pekar result (51. The average number of phonons and the polaron 
size are given by 

(3.29) 

(3.30) 

which in contrast to the weak-coupling case now depend on both the electron-phonon 
coupling constant and the Coulomb binding parameter. 

N = (n/4)cu(a + 2p)  

R = l / (a  + 28) 
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3.2. The hydrogenic approximation 

In this case we take the trial function to be the GS of a ZD hydrogenic atom: 

S Si1 and A Chafterjee 

~ ( p )  = 5?3(y /VE)  e-2yp (3.31) 

pp = [ l  + (1 - a)zq2/(16y2)]-3’2 

where y is a variational parameter. The renormalized charge density is now given by 

(3.32) 

so that equations (3.10), (3.11) and (3.13) reduce to 

E = 2y2 - 4yp  - ( 1  + fi yf’)F(f’) (3.33) 

N = ( 1  + f i y t ’ ) G ( f ‘ )  (3.34) 

R = 1/(2y) (3.35) 

where 

I‘ = (1 - a ) / ( f l a y )  (3.36) 

F(f‘) = (an/8)(3t” + 181’ + 32)/(r‘ + 2)3 (3.37) 

G(t’ )  = ( ~ ~ / 8 ) ( 3 f ’ ~  + 24t” + 64t’ + 32)/(t‘ + 2)‘. (3.38) 

(3.39) 
Minimization of (3.33) with respect to y now leads to 

y = p + ( v5 /4 ) t fF ( t , )  
and we have 

E = -2[p + (vT/4)f’F(t‘)J2 - F(t’) 

N = [l + f i / 3 t ’  + (t’2/2)F(t’)]G(f’)  

R = 1/{2[p + ( f i /4 ) t ‘F( t ’ ) ]}  

(3.40) 
(3.41) 

(3.42) 

where f ’  is to be obtained from 
6E/6t’ = 0. (3.43) 

E = -2p’ - nm/2 (3.44) 
N = ne14 (3.45) 

In the ES limit we obtain 

R = l/(2/3) (3.46) 

while in the LS limit the results are 
E = -2[p + 3n~~/(16\5)]  

R = 2 [ p  + 3 n a / ( 8 ~ ) ] - ’ .  

(3.47) 

(3.49) 
N = ( 3 f i n r r / B ) [ p  + 3 x a / ( 1 6 f i ) ]  (3.48) 

Again for all values of the coupling parameters calculation has to be performed numeri- 
cally. The numerical results are summarized below. 

3.3. Numerical results 

In both harmonic-oscillator and hydrogenic approximations, we have studied the CY 
dependence of E ,  Nand  R over the entire range of CY numerically for two values of /3 
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Figure [.The Gsenerg) €(in Fqnman unllsj \emus n foro = 2 in I B O  and lhree aimensions 
in harmoncadlator 3nd h)drogenx approrimations 

(p  = 2 and p = 10). Results are shown graphically in figures 1 to 6 where we also plot 
the corresponding bulk (3D) values for comparison. 

In figure 1 we show the plot of the ZD and 3D GS energies versus 01 for p = 2. For the 
same value of (Y the bound polaron in a quantum well clearly has a lower energy than in 
a bulk crystal. Also the difference between the ZD and 30 energies appears to increase 
monotonically with LY. It is furthermore observed that, for small values of e, the hydro- 
genic trial function gives lower results in both ZD and 3D. However, for large a, the 
harmonic-oscillator approximation turns out to be a better approximation. This isclearly 
evident for the quantum-well case, for which the two curves corresponding to the two 
types of trial wavefunctions cross each other at about 01 = 8.5. For the bulk problem, on 
the other hand, our figure does not show any such crossing. However, we guess that the 
crossing in this case will probably occur at some higher value of a. Moreover if p is small, 
the crossing may be expected at a smaller value of a. 

Figure 2 gives the plot of the GS energy for /3 = 10. Again the energy is lower in ZD. 
Interestingly, however, now for the entire range of 01 the hydrogenic approximation 
yields lower results in both ZD and 3D and no indication of aforementioned crossing is 
observed. Thus, when (Y and p are both large or both small or when LY is small and p is 
large, the hydrogenic wavefunction provides better answers for the GS energy, while in 
the case of small p and large LY the effective potential for the electron’s motion is better 
approximated by the harmonic-oscillator potential. It is furthermore observed that the 
scaling relation between the 2D and 3D bound-polaron energies 

(3.50) 

which was proposed by Bhattacharya et a1 [5] in the harmonic-oscillator approximation 
within the Feynman-Haken path-integral formalism is also satisfied in the LLP-H scheme 
(again in the harmonic-oscillator approximation only) for the entire range of CY and p. 
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Figuret.TheGsenergy E (inFeynmanunits)versusniorB = 1Ointwoand threedimensions 
in harmonic-oscillator and hydrogenic approximations. 

Figure 3. Average number of phonons N around the electron in the GS versus n for p = 2 in 
two and three dimensions in harmonic-oscillator and hydrogenic approximations. 

Figures 3 and 4 give the plots of the average number of phonons around the electron 
intheciswith &for/3 = 2 a n d p  = 10respectively. Forthesamesetofaandp,thebound 
polaron cloud in a quantum well appears to contain a larger number of phonons than in 
a bulk crystal. This shows that the polaronic effect is stronger in ZD than in 3D. 

I n  figures 5 and 6 we study the variation of the size of the polaron with a for p = 2 
and /3 = 10 respectively. For the same values of (Y and /3, the polaron size is smaller in a 
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Figure 4. Average number of phonons N around the electron in the GS versus o for p = 10 
in two and three dimensions in harmonic-oscillator and hydrogenic approximations. 

0.1 IT------ 

0.6 - 
R 

0.2 - 

0.2 - 

Figure 5. Sue of the polaron R (in Feynman units) in the GS versus ~1 for p = 2 in two and 
three dimensions in harmonic-oscillator and hydrogenic approximations. 

quantum well than in a bulk crystal, which is clearly visible from the figures. This again 
points to the fact that the polaronic interaction is more pronounced in 2D than in 3 ~ .  

To show the efficacy of the LLP-H method we now compare in table 1 the LLP-H 
values for the GS energy obtained in the harmonic-oscillator approximation with the 
corresponding Feynman-Haken path-integral results, which we obtain by numerically 
minimizing equation (24) of [5] with respect to A .  It is clear that the LLP-H results are 



9410 S Si1 and A Chatterjee 
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0.02 

( I )  
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Figure 6. Sire of the polaron R (in Feynman units) in the Gs versus (Y for p = 10 in two and 
three dimensions in harmonic-oscillator and hydrogenic approximations. 

Table 1. The ts energy of the 2~ bound polaron in Feynman units. First line: Feynman- 
Haken path-integral method in the harmonic-oscillator approximation. Second line: LLP.H 
method in the harmonic-oscillator approximation. 

2 5 IO 
. , ,  ,rr, , ~ , , , . . .  ,.,, ,.,, ,,.,,, i , " ,  

B/n 

1 -10,090 -47.642 -173.246 
-9.902 -47.562 - 173.202 

3 - 19.834 -66.69 -207.920 
-19.460 -66.481 -207.80 

5 -32.58 
-32.09 

-88.822 
88.522 

-245.718 
-245.52 

7 -48.102 -114,066 -286.643 
-47.837 -113.69 -286.380 

10 -77.966 - 157.782 -353.903 
-n.m -157.316 -353.539 

fairly accurate over the entire range of the coupling parameters. (The accuracy of the 
Feynman-Haken method has already been well established by Matsuura [9] in the 
context of the bulk problem.) The reason for considering here only the harmonic- 
oscillator approximation for comparison is that in the Feynman-Haken method this 
approximation is much easier to handle from the computational point of view. 

4. Excited stater 

For the excited-state energies we employ the hydrogenic approximation and thus use 
for the first two internal excited states the hydrogenic 2s and 2p wavefunctions: 
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with A as the variational parameter. In the extended- and localized-state limits, we get 

ES Ea = 2p2/9 - nn/2 E,, = -2pz/9 - Z L Y / ~  ( 4 . 2 4  
LS Ezs = -2@/3 + 0.0776~n/l/Z)’ E+ = -2@/3 + 0.08971rn/fi)~. 

(4.26) 

In each of equations (4.2a), the first term, i.e. (-2p2/9), may be identified as the 
degenerate 2s-2p energy of the unperturbed impurity atom in ZD and the second term, 
i.e. (-n(~/Z),mayberegardedastheshiftintheimpurityatomlevelduetotheelectron- 
SO phonon interaction. This interpretation is, however, strictly perturbative and should 
not rigorously apply to  equations ( 4 . 2 ~ )  because these equations have been derived in 
thelimit n+ 0,p- t  0. whereas,for the perturbation theory toworkrigorously,pshould 
be large and n small. Obviously for equations ( 4 2 )  too the perturbative interpretation 
does not hold in general because here both (Y and p may be large. But the perturbative 
interpretation is certainly valid in the following limiting cases: 

E n @ - )  m, 

EZp(P+ 30, 

0) = -2pz/9 - (0.3104/3d) nap 
0) = -28’19 - (0.3588/3d) (4.3) 

which follow directly from ( 4 2 ) .  Weshall howeveralwaysprefer touse theperturbative 
language for convenience. Thus we find that, in the case of small n and p, the electron- 
so phonon interaction lowers the degenerate 2s and 2p states of the impurity atom by 
the same amount and hence the degeneracy is not lifted. However when CY and 6 are 
both large or at least one of them is sufficiently large, the 2p state is lowered more than 
the 2s level. So in this regime the electron-phonon interaction induces a splitting in the 
2s-2p levels of the impurity atom, leading to the so-called phonon Lamb shift. 

For intermediate values of the coupling parameters the calculation has been done 
numerically. The variation of the 2s and 2p energies with CY has been studied for two 
values of p ( p  = 2, ,L3 = 10). The results are shown graphically in figures 7 and 8. It is 
clear that for 6 = 2 (figure 7) the 2s and 2p states have the same energy up to large 
enough n (say n = lo), while f o r g  = 10 (figure 8) the 2s-2p degeneracy is lifted even at 
much smaller values of n. One may also notice that the phonon-induced Lamb shift 
(Ezp - Ez5) increases with increasing n. 

In table 2 we present the Is, 2s and 2p energies, 1s-2s and 1s-2p transition energies 
and the phonon Lamb shifts for a number of polar materials. The phonon Lamb shift is 
found to be zero for GaAs, ZnAs, CdS, ZnO, MnO and TiCI; while for the alkali halides 
like NaCI, KCL, NaBr, NaI and KI and for Cu,O, the 2p states are found to have 
much lower energies than the 2s states and consequently large phonon Lamb shifts are 
predicted for these materials. For all the above materials we have also performed a 30 
calculation for the sake of comparison (table 3). It may be noted that for the bulk crystals 
of the alkali halides the Lamb shifts are of much smaller magnitude compared to 
the corresponding quantum-well values, and in bulk CuaO the Lamb shift is zero. 
Furthermore, the sign of the shift in the 2D alkali halides is opposite to that in the bulk 
cases. This phenomenon of reversal in the sign of the phonon Lamb shift that we find 
for the same material as we go from its bulk crystalline form to the ZD quantum- 
well structure is indeed an interesting theoretical observation and should be tested 
experimentally. Such investigations might be important in completely different contexts 
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0 2 4 6 6 
D 

Figure7. The ?D bound-polaron excited-state energies €,and El,  (in Feynman units) versus 
a for ,8 = 2 in the hydrogenic approximation. 

~ 

0 2 6 8 . 
0. 

Figure% The ?D bound-polaronexcited-state energies 
n for ,8 = 10 in the hydrogenic approximation. 

and E?, (in Feynman units) versus 

as well. For instance, a similar analysison CuO?-based high-?; materials might by useful 
in dictating whether polaronic interactions are present at all in these materials and, if 
they are, whether they are in the CuO, plane only or they also have a sizable component 
along the c axis. 
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5. Conclusions 

In conclusion, the bound-polaron problem in a purely ZD quantum well has been inves- 
tigatedforthe entirerange oftheelectron-phononcouplingconstant cuand the Coulomb 
binding parameter p using the LLP-H method. The GS energy, the mean number of 
phonons in the polaron cloud and the size of the polaron are obtained in both harmonic- 
oscillator and hydrogenic approximations. The GS energy values have also been com- 
puted for a number of polar materials. Comparison of the LLP-H energies (in the har- 
monic-oscillator approximation) with the corresponding Feynman-Haken path-integral 
results shows that the LLP-H method is fairly accurate over the entire range of CY and p. 
We find from our LLP-H calculation that, when cr and p are both large or both small or (Y 

is small and p large, the hydrogenic trial function proves to be a better choice as the 
electronic function, while for the case of sufficiently large cr and small p the harmonic- 
oscillator approximation seems to provide a better description of the situation. A 
comparison of the 2D GS properties with the corresponding 3D ones shows that the 
polaronic effects are stronger in quantum wells than in bulk materials. The scaling 
relation between the ?D and 3D bound-polaron GS energies, which was proposed recently 
by Bhattacharyaet d[51 in the harmonic-oscillator approximation, is found to be satisfied 
for all cr and p. 

Though from the point of view of accuracy the Feynman-Haken path-integral 
method looks somewhat better, the LLP-H scheme has an important advantage in that it 
can be easily applied to the excited states. We have obtained the 2s and 2p excited-state 
energies of the 2D bound polaron in the hydrogenic approximation. It is observed that 
in the case of small cr and 6, the 2s-2p degeneracy of the hydrogenic impurity is not 
lifted, while in the case of large cr and p (or large p and small a) ,  the degenerate 2 e 2 p  
levels do split, leading to the phonon Lamb shift. For a number of materials we have 
found that the 2D phonon Lamb shifts are much larger than the corresponding 3D ones 
andareofoppositesign. This, aswe havealreadymentioned.isaninterestingtheoretica1 
observation and should show up in the optical absorption experiments on hydrogen- 
doped thin films of some ionic materials. Our analysis is. however, based on a purely ZD 
model, which is an idealized model, and a realistic calculation should use a quasi-2~ 
model. Such investigations are in progress and the results will be reported in due course. 
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