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Abstract. The bound-polaron problem in a purely two-dimensional quantum well is studied
variationally for the entire range of the electron-phenon coupling constant and the Coutomb
binding parameter. The ground-state energy, the average number of virtual phonons around
the electron and the size of the polaron are calculated. A comparison made with the
corresponding quantities for bulk crystals shows that the polaronic effects are more pro-
nounced in twa dimensions. The energies of the first two excited states are obtained and the
phenon-induced Lamb shift corrections are computed for several polar materials.

1. Introduction

With the development of modern fabrication techniques like molecular-beam epitaxy
and metal-organic chemical-vapour deposition, it has now become possible to realize
electron systems in quasi one or two dimensions. Consequently, much effort (see [1] for
references) has lately gone into exploring electronic states at surfaces and interfaces and
in quantum wells and heterojunction superlattices of polar semiconductors. These
studies are important from the point of view of device technology and also for the
understanding of 2 number of surface phenomena such as transport properties in thin
films, photoemission and electron diffraction. For the quantum-well problem, both
purely two-dimensional (20) and quasi-two-dimensional polaron models have been
studied and one of the most interesting results emerging from the free surface optical
(so) polaron model is that the polaronic properties are more pronounced in two dimen-
sions than in three dimensions.

Bhattacharya ez al [2] have introduced the model problem of an extrinsic quasi-2p
electron interacting with the so phonons of a polar material and a positive Coulomb
impurity localized at the surface. Imperfections being a rule rather than an exception,
such an impurity-bound 2D polaron is obviously more realistic and is therefore of much
practical importance. Gu and his collaborators [3] have considered in a series of papers
the case of an intrinsic bound polaron locatized at surfaces and interfaces of polar
materials and in polar slabs. Their work has revealed several interesting features about
these systems. Mason and Das Sarma [4] have calculated the phonon-induced shifts in
shallow donor ievels in semiconductor quantum structures such as Al,Ga,_ As—GaAs
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quantum wells and the CdTe~HgTe system using a purely 20 polaron model and have
shown that the phonon Lamb shifts obtained perturbatively are negligibly small. Very
recently, the ground state {Gs) of this model has been studied in the limiting cases by
Bhattacharya er al [5], who have also proposed a new dimensional scaling relation for
the Gs energy. In the present paper we address ourselves to the same 2D model quantum-
well problem for the entire range of coupling parameters. Using a variant of the Lee,
Low and Pines (LLP) method [6] as proposed by Huybrechts (LLP-H) [7], we obtain the
GS energy, the size of the polaron, the average number of virtual phonons in the polaron
cloud and the first two internal excited-state energies. To examine the efficacy of this
method we also extend the path-integral calculation of [5] in the harmonic oscillator
effective potential approximation to all coupling and compare with the corresponding
LLP-H GS results.

2. The model Hamiitonian

The model we consider is as follows. The material under study is an extremely thin film
of an ionic crystal or a polar semiconductor on a non-polar substrate, and for simplicity
it is modelied by a purely 2D quantum well. The material contains an extra electron at
the bottom of its conduction band which interacts with the (20} optical phonons of the
system. Let us also consider a localized Coulomb impurity in the system which can bind
the electron. Assuming the effective-mass approximation to be valid the Hamiltonian
for such a purely 2D electron-impurity system interacting with 2D optical phonons of the
polar medium may be written as
me-lvn oy 2 (bib, + B+ X 1EL (e — )b} 2.1
= m ' 'e—xpf Wy q'( L ) - [Eq‘e ) q'+HC] ()
where all vector are two-dimensional and p'? = x'2 + y’%. The first term refers to the
kinetic energy of the electron in two dimensions; the second term describes the electron
impurity interaction, where £, is an effective dielectric constant given by

£u = (£a + 1)/2 (2.2)

¢, being the high-frequency dielectric constant of the material; the third term is the
unperturbed 2D optical phonon Hamiltonian, with w, denoting the dispersionless optical
phonon frequency in two dimensions; and the fourth term gives the electron-phonon
interaction as well as the impurity-phonon coupling, the impurity being considered to
be centred at the origin. The coefficient & is given by

2 112
Sy = Zm(zaf:xe'ws) / % | ' 23)
where A" measures the area of the surface,
6 =2n/[wi(E, — E.)] 2.4
E . =(g,— 1)/(e, +1) (2.5)
E.=(t.— 1)/ (g5 +1) (2.6)

g, being the static dielectric constant of the medium. We shall work in the Feynman units
and therefore scale the energy by #Aew,, length by u~™', where u is given by
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h%u’/m = hw,, area by u~? and wavevectors by «. The Hamiltonian (2.1) then reduces
to the following dimensionless form:

= o g2 B LS s, +p + SIE (e - 16 + ue) @7)
hw, Py 7 :
where
g, =i(V2mafgA)? (2.8)
a=e*(E, — E.)(m/2h w,)"" 2.9
2 -1/2
i)

« and § being dimensionless coupling parameters. The impurity—phonon interaction
term can, however, be completely eliminated by performing the canonical trans-
formation [8]:

b,=b, — E,. (2.11)

Finally ignoring an infinite constant energy (Z,|&,|?), which is equivalent to adjusting
the baseline of the energy, the system Hamiltonian can be expressed as

H=-}v2 - g + 2 (bib, + 1) + 2 (5,e7Pb} + HC) (2.12}
q q
where § is the renormalized Coulomb binding parameter given by
e,2 k -1/2
= 2.13
B hw £, (mws) @13)
with
£ = (g, +1)/2. (2.14)

3. The ground state
In the LLP-H method the first LLP transformation [6] is modified as
U, = exp(—iaEq-rb;bq) (3.1)
q
where a is a variational parameter. Then after the second LLP transformation [6]

U, = exp@ fbi -2 b,,) (3.2)

the Hamiltonian (2.12) becomes
H=U;'U"'HU, U, (3.3)

—iv2 - f + 3 (1 +ag /Bl + )b, +f,)

+ X [E,e =P (b} 4 1) + HC] — @ 2 prg(bl + F3)(bg + f)
g q .



9404 S Sil and A Chatterjee

+ 5 2 g g B} +F)byg + )by + 1)y + 1) (3.4)

where p is the electron momentum and the function f, is to be obtained variationally.
When g = 1 this modified procedure reduces to the usual LLP method, and for a = O this
scheme is equivalent to the Landau—Pekar formalism. The variational energy is now
written as

= (®(p) |{0{ H|0)| ©(p)) (3.5)

where @(p)isthe electronic function to be chosen variationally and |0} is the unperturbed
zero-phonon state. If we assume that f, is a function of |¢| only, then

quﬁ,l2 =0 (3.6)
and the vanatlonal energy simplifies to .
E={(D|(-3V2 - B/p)|®) + 2 L+ azq’/z)!fql2 + E (E,qu"‘ + HC) (3.7)
where

e ={(@(p)|e"' ~I7P| D(p)) (3.8)

is the Fourier transform of the renormalized charge density. Minimizing (3.7) with
respect to f; now yields

fo=~E01 /0 +ag?/2) (59)
2
- @) (4% = p/p)|@(o) - 3 e, (3.10)

The mean number of virtual phonons N in the cloud around the electron in the Gs may
be writien as

N = (@(p)|OIN0)| (o)) = 2 I, 2 (3.11)
g
where
N=Us'Ur'ble U U, (3.12)
and the size of the polaron R may be defined as
= (D(p)|p|2(p))- (3.13)

So far the electronic wavefunction has not been specified. Now we shall consider two
types of trial wavefunctions, namely the Guassian function (the harmonic-oscillator
approximation} and the Coulomb 1s function (the hydrogenic approximation).

3.1. The harmonic-oscillator approximation
Choosing

®(p) = (A/Vm) exp(~A2p?/2) N (3.14)
we obtain

p, = exp[—(1 —a)’q?/(4A%)]. (3.15)
Equations (3.10), (3.11) and (3.13) then reduce to
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A 1-a) —a)
E= 5 \/Eﬁi - fzzexp(—( az;) ) erfc((lala)) (3.16)
@ exp[—(1 — a)*¢?/(24%)]
N= Viqu (1 + a’q*/2)* (3.17)

R =Vn/(24) (3.18)

where erfc(x) is the complementary error function. Minimization of (3.16) with respect
to A now gives

A=V B+ (m/2)at e’ erfe(r) (3.19)
E=—4VnaB+ (mat/2) e erfc()]? - (ma/2) e erfc(t) (3.20)
— _ 242 2.2 -2
N= K% [ dq exp (2{\/?: B+ ((ir/zfizi.fl erfc(t)]) (1 +2 ; ) (3.21)
R=Vaz/Vr B+ (n/2)ate’ erfc(t)] (3.22)
where
t= (1~ a)/ak (3.23)

is to be treated as a new variational parameter instead of . The Gs energy is finally
obtained by minimizing (3.20) with respect to ¢, With this variationally obtained value
of t we can then calculate the number of phonons and the size of the polaron from (3.21)
and (3.22) respectively. For all values of & and $, caiculation has to be performed
numerically. However, in the limiting cases it is possible to get analytical expressions.

(i) Weak-coupling weak-binding (extended-state) limit (& — 0, §— 0, a— 1}. In
this limit

E=—naf2 — aB?/2 (3.24)
N = naf4 (3.25)
R=1/(2p). (3.26)

It is interesting to note that in the extended-state (£s) limit the average number of
phonons depends on the electron—phonon coupling only, while the size of the polaron
is governed by the impurity binding parameter.

(ii) Localized-state (Ls) limit (@ — 0). In this limit,  — % and we use the asymptotic
relation

Ve erfe(r) = 1. (3.27)
The Gs energy is then obtained as
E= ~(n/8)a + 2)* (3.28)

which is the Landau—Pekar result [5]. The average number of phonons and the polaron
size are given by

N = (n/Dale + 28) ' (3.29)
R=1/(a +28) (3.30)

which in contrast to the weak-coupling case now depend on both the electron-phonon
coupling constant and the Coulomb binding parameter.
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3.2. The hydrogenic approximation

In this case we take the trial function to be the G5 of a 2D hydrogenic atom:

O(p) = P (y/Vaye (331)
where v is a variational parameter. The renormalized charge density is now given by

pe = [1+ (1= a)’q?/(16y")] (3.32)
so that equations (3.10), (3.11) and (3.13) reduce to

E=2y"—4yB — (1 + V2 yYF(') (3.33)

N =01+ VZy)G({) ' (3.34)

R=1/2y) (3.35)
where

¢ =(1-a)/(VZay) (3.36)

F(t') = (ax/8)(3¢'2 + 18" + 32)/(¢' + 2)° (3.37)

G(1')y = (/)33 + 24 + 641" + 32)/(' + 2)*. (3.38)
Minimization of (3.33) with respect to y now leads to

y=B+ (V2/9)rF) (3.39)
and we have

E = =2[B + (VZ/4)t F(1')]* — E(t) (3.40)

N=[1+VZBr+ (" FNIGE) T (3.41)

R = 1/{2[B + (VZ/4y F} (3.42)
where ' is to be obtained from

SE/S = 0. (3.43)

In the Es limit we obtain
= =2B% — wa/2 (3.44)

N = raf4 (3.45)

R=1/(28) (3.46)
while in the LS limit the results are

= —2[B + 37a/(16V2)] (3.47)
N = (3V2 na/8)[f + 3ma/(16V'Z)] ' (3.48)
R =2[8+ 3na/(8V2)] ™. (3.49)

Again for all values of the coupling parameters calculation has to be performed numeri-
cally. The numerical results are summarized below.

3.3. Numerical resulfts

In both harmonic-oscillator and hydrogenic approximations, we have studied the &
dependence of E, N and R over the entire range of @ numerically for two values of
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Figure t. The Gs energy E (in Feynman units) versus & for § = 2in two and three dimensions
in harmonic-oscillator and hydrogenic approximations.

(f =2 and § = 10). Results are shown graphically in figures 1 to 6 where we aiso plot
the corresponding bulk (3D) values for comparison.

In figure 1 we show the plot of the 2D and 3D Gs energies versus & for 8 = 2. For the
same value of & the bound polaron in a quantum well clearly has a lower energy than in
a bulk crystal. Also the difference between the 2D and 3b energies appears to increase
monotonically with a. It is furthermore observed that, for small values of «, the hydro-
genic trial function gives lower results in both 2D and 3D. However, for large «, the
harmonic-oscillator approximation turns out to be a better approximation. Thisis clearly
evident for the quantum-well case, for which the two curves corresponding to the two
types of trial wavefunctions cross each other at about & = 8.5. For the bulk problem, on
the other hand, our figure does not show any such crossing. However, we guess that the
crossing in this case will probably occur at some higher value of a. Moreover if 8is small,
the crossing may be expected at a smaller value of .

Figure 2 gives the plot of the Gs energy for 8 = 10. Again the energy is lower in 2D.
Interestingly, however, now for the entire range of a the hydrogenic approximation
yields lower results in both 2D and 3D and no indication of aforementioned crossing is
observed. Thus, when « and # are both large or both smail or when a is small and § is
Jarge, the hydrogenic wavefunction provides better answers for the Gs energy, while in
the case of small 8 and large a the effective potential for the electron’s motion is better
approximated by the harmonic-oscillator potential. It is furthermore observed that the
scaling relation between the 2p and 3D bound-polaron energies

E™ = 3E®(ina, 328) (3.50)

which was proposed by Bhattacharya et a/ [5] in the harmonic-oscillator approximation
within the Feynman-Haken path-integral formalism is also satisfied in the LLP-H scheme
(again in the harmonic-oscillator approximation only) for the entire range of & and 8.
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Figure 3. Average number of phonons N around the electron in the G5 versus a for 8 =2 in
two and three dimensions in harmonic-oscillator and hydrogenic approximations,

Figures 3 and 4 give the plots of the average number of phonons around the electron
in the Gs with afor # = 2and 8 = 10 respectively. For the same set of v and 3, the bound
polaron cloud in a quantum well appears to contain a larger number of phonons than in
a bulk crystal. This shows that the potaronic effect is stronger in 2D than in 3D.

In figures 5 and 6 we study the variation of the size of the polaron with o for § = 2
and § = 10 respectively. For the same values of & and 3, the polaron size is smaller in a
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Figure 4. Average number of phonons N around the electron in the Gs versus & for § = 10
in two and three dimensions in harmonic-oscillator and hydrogenic approximations.
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Figure 5. Size of the polaron R (in Feynman units} in the G§ versus o for 8 = 2 in two and
three dimensions in harmonic-oscillator and hydrogenic approximations.

quantum well than in a bulk crystal, which is clearly visible from the figures. This again
points to the fact that the polaronic interaction is more pronounced in 20 than in 3p.
To show the efficacy of the LLP-H method we now compare in table 1 the LLP-H
values for the G energy obtained in the harmonic-oscillator approximation with the
corresponding Feynman-Haken path-integral results, which we obtain by numerically
minimizing equation (24) of [5] with respect to 4. It is clear that the LLP-H results are
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Figure 6. Size of the polaron R (in Feynman units) in the 65 versus @ for § = 10 in two and
three dimensions in harmonic-oscillator and hydrogenic approximations.

Table 1. The G5 energy of the 20 bound polaron in Feynman units. First line: Feynman—
Haken path-integral method in the harmonic-oscillator approximation, Second line: LLP-H
method in the harmonic-oscillator approximation.

Ble 2 5 10
1 ~10.090  —47.642 e
-9.902 -47.562 —173.202
3 ~19.834 —66.69 —207.920
~19.460 —66.481 —207.80
5 -32.58 -88.822 —245.718
-32.09 88.522 —245.52
7 -48.402 —-114.066 -286.643
—47.837 -113.69 —286.380
10 —~77.966 -157.782 —1353.903
-77.325 -157.316 —353.539

fairly accurate over the entire range of the coupling parameters. (The accuracy of the
Feynman-Haken method has already been well established by Matsuura [9] in the
context of the bulk problem.) The reason for considering here only the harmonic-
oscillator approximation for comparison is that in the Feynman-Haken method this
approximation is much easier to handle from the computational point of view.

4. Excited states

For the excited-state energies we employ the hydrogenic approximation and thus use
for the first two internal excited states the hydrogenic 2s and 2p wavefunctions:
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42 24 41 812 2A 0
P, = mexp(— 3 ,0)(1 ?p) @y = VT eXP(‘" ?P) € (4.1}

with A as the variational parameter. In the extended- and localized-state limits, we get

ES Es =2B%/9 — maf2 Ey = =28%/9 ~ ma/f2 (4.2a)
LS Ey = =2(8/3 + 0.0776m0/V?2)? By = =2(B/3 + 0.0897ner/V2)>.
(4.26)

In each of equations (4.2a), the first term, i.e. (—252/9), may be identified as the
degenerate 2s—2p energy of the unperturbed impurity atom in 2D and the second term,
i.e. {—ma/2), may be regarded as the shift in the impurity atom leve] due to the electron-
50 phonon interaction. This interpretation is, however, strictly perturbative and should
not rigorously apply to equations (4.2a) because these equations have been derived in
the limit «— 0, 8 — 0, whereas, for the perturbation theory to work rigorously, § should
be large and a small. Obviously for equations (4.2b) too the perturbative interpretation
does not hold in general because here both & and 8 may be large. But the perturbative
interpretation is certainly valid in the following limiting cases:

Es(f— o, 0 — 0) = —282/9 — (0.3104/3V2) 7ef
Epp(B— =, @ — 0) = —262/9 — (0.3588/3V2) maf

which follow directly from (4.25). Weshall however always prefer to use the perturbative
language for convenience. Thus we find that, in the case of small & and 3, the electron-
$0 phonon interaction lowers the degenerate 2s and 2p states of the impurity atom by
the same amount and hence the degeneracy is not lifted. However when & and § are
both large or at least one of them is sufficiently large, the 2p state is lowered more than
the 2s level. So in this regime the electron—phonon interaction induces a splitting in the
2s5—2p levels of the impurity atom, leading to the so-called phonon Lamb shitt.

For intermediate values of the coupling parameters the calculation has been done
numerically. The variation of the 2s and 2p energies with & has been studied for two
values of § (B =2, f = 10). The results are shown graphically in figures 7 and 8. It is
clear that for § =2 {figure 7) the 2s and 2p states have the same energy up to large
enough « (say & = 10), while for 8 = 10 (figure 8) the 2s-2p degeneracy is lifted even at
much smaller values of a. One may also notice that the phonon-induced Lamb shift
(Ez, — E,) increases with increasing a.

In table 2 we present the 1s, 2s and 2Zp energies, 1s-2s and 15-2p transition energies
and the phonon Lamb shifts for a number of polar materials. The phonon Lamb shift is
found to be zero for GaAs, ZnAs, CdS, ZnO, MnO and TiCl; while for the alkali halides
like NaCl, KCl1, NaBr, Nal and KI and for Cu,O, the 2p states are found to have
much lower energies than the 2s states and consequently large phonon Lamb shifts are
predicted for these materials. For all the above materials we have also performed a 3p
calculation for the sake of comparison (table 3). It may be noted that for the bulk crystais
of the alkali halides the Lamb shifts are of much smailer magnitude compared to
the corresponding quantum-well values, and in bulk Cu,O the Lamb shift is zero.
Furthermore, the sign of the shift in the 2D alkali halides is opposite to that in the bulk
cases. This phenomencn of reversal in the sign of the phonon Lamb shift that we find
for the same material as we go from its bulk crystalline form to the 2b quantum-
well structure is indeed an interesting theoretical observation and should be tested
experimentally. Such investigations might be important in completely different contexts

(4.3)
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Figure 8. The 20 bound-polaron excited-state energies Eb and £y, (in Feyaman units) versus
& for § = 10in the hydrogenic approximation.

as well, For instance, a similar analysis on CuQ;-based high-T, materials might by useful
in dictating whether polaronic interactions are present at all in these materials and, if
they are, whether they are in the CuQ, plane only or they also have a sizable component
along the ¢ axis.
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5. Conclusions

In conclusion, the bound-polaron problem in a purely 2b quantum well has been inves-
tigated for the entire range of the electron—phonon coupling constant & and the Coulomb
binding parameter B8 using the LLP-H method. The GS energy, the mean number of
phonons in the polaron cloud and the size of the polaron are obtained in both harmonic-
oscillator and hydrogenic approximations. The G$ energy values have also been com-
puted for a number of polar materials. Comparison of the LLP-H energies (in the har-
monic-oscillator approximation) with the corresponding Feynman-Haken path-integral
results shows that the LLP-H method is fairly accurate over the entire range of & and §.
We find from our LLP-H calculation that, when o and # are both large or both small or o
is small and 5 large, the hydrogenic trial function proves to be a better choice as the
electronic function, while for the case of sufficiently large a and small 8 the harmonic-
oscillator approximation seems to provide a better description of the situation. A
comparison of the 20 GS properties with the corresponding 30 ones shows that the
polaronic effects are stronger in quantum wells than in bulk materials. The scaling
relation between the 2D and 3D bound-polaron Gs energies, which was proposed recently
by Bhattacharyaeta/[5] inthe harmonic-oscillator approximation, is found to be satisfied
for all & and 8.

Though from the point of view of accuracy the Feynman—Haken path-integral
method looks somewhat better, the LLP-H scheme has an important advantage in that it
can be easily applied to the excited states. We have obtained the 25 and 2p excited-state
energies of the 2D bound polaron in the hydrogenic approximation. It is observed that
in the case of small & and 8, the 2s-2p degeneracy of the hydrogenic impurity is not
lifted, while in the case of large o and B (or large 5 and small a}, the degenerate 2s-2p
levels do split, leading to the phonon Lamb shift. For a number of materials we have
found that the 2D phonon Lamb shifts are much larger than the corresponding 3D ones
and are of apposite sign. This, as we have already mentioned, is an interesting theoretical
observation and should show up in the optical absorption experiments on hydrogen-
doped thin films of some ionic materials. Qur analysis is, however, based on a purely 20
model, which is an idealized model, and a realistic calculation should use a guasi-2D
model. Such investigations are in progress and the results will be reported in due course.
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